

Gulfwide Offshore Activities Data System for CY2005 (GOADS-2005)

Ms. Holli Ensz, MMS
Ms. Darcy Wilson, ERG
Mr. Andy Blackard, ERG
Mr. Brian Boyer, COMM Engineering

October 13, 2004

MMS Introduction

- Goal of program
- What structures should be included
- Schedule
- MMS Website
- FAQs

Goal of Program

- US EPA regulations for ozone, PM2.5, and regional haze require state agencies to perform modeling for use in their SIPs to show compliance with NAAQS and/or ways to improve air quality.
- Emission inventories are needed as input to conduct this air quality dispersion modeling.
- MMS must collect activity data from the operators to generate emission inventories.
- CY2005 EI will coincide with state agencies effort.

Structures to be Included

- All structures in the Western Gulf of Mexico (OCS west of 87° 30' West longitude) except:
 - Living quarters
 - Structures with only fugitive emissions and/or a diesel crane engine (e.g., single well caissons)

- Collect activity data for input into GOADS-2005 from January 1, 2005 to December 31, 2005.
- All activity data must be submitted to MMS by April 21, 2006.

- www.gomr.mms.gov/homepg/regulate/ environ/requirements.html
- Under "Air Quality," click on GOADS-2005
- Included on the website:
 - NTL No. 2004-G17
 - GOADS-2005 Software and User's Guide
 - How to Submit Emissions Reports
 - Technical Support/Updates- Master List for Importing

- A FAQs link on MMS' website will direct you on how to subscribe to an internet forum.
- All technical questions and associated answers related to GOADS-2005 will be listed on this forum.
- Any policy issues should be addressed to MMS.
- This forum will also direct you on how to get 2000 static import files.

Introduction to GOADS-2005

- Previous BOADS and GOADS-2000 data collection
- Improvements in GOADS-2005
- Interaction with GOADS-2000
- Data entry guidance
 - Using the new program
 - Volume vented
 - Volume flared
 - Losses from flashing
 - Fuel usage, composition
 - Fugitive component count
 - Watch units!
- GOADS-2005 demonstration

Previous Structure of GOADS-2000

- Data organization resulted in duplication of all platform and equipment data each month
- Results increased data volume, data entry, and processing time
- Results increased likelihood of data entry errors

- User/operator information: static
- Platform description data: static
- Equipment description data: static
- Monthly platform and equipment activity data: dynamic

Examples of Static Platform Descriptive Data

- User ID
- Address
- Complex ID
- Structure ID
- Area
- Block
- Latitude/longitude
- Lease number
- Sales gas composition

Examples of Static Equipment Descriptive Data

- Equipment ID
- Stack parameters
- Control device details
- Fugitive component count
- Boilers: max rated fuel use
- Mud degassing: mud type

Examples of Static Equipment Descriptive Data, continued

- Natural gas turbines and engines: max horsepower
- Pneumatic pumps: manufacturer, model
- Pressure level controllers:
 manufacturer, model, service type
- Storage tanks: dimensions

Examples of Dynamic Equipment Data (monthly)

- Operating hours
- Fuel usage rate
- Total fuel used
- Processed throughput
- Volume flared
- Volume vented
- Volume loaded

- Volume vented and flared activity data simplified
- Print screen function/review of data entered
- Access file import and export features
- Excel export feature
- Flag inactive platforms or equipment as "No Emissions to Report"

Interaction with GOADS-2000

- Import feature for GOADS-2000 static description platform and equipment data
- Request GOADS-2000 files from MMS for import into GOADS-2005
- January, 2005 descriptive fields populated
- Review data closely and edit as needed
- Create records for new structures and equipment that were not in place in 2000

New User	
<u>Please enter your</u>	User Information
MMS Company No*:	(5 characters or less)
Contact Name*:	
Phone*:	() - ext
Fax:	() 94
Email:	
Company Name*:	7
Address 1*:	
Address 2:	
City*:	
State*:	
Zip Code*:	
Inventory Year*:	
* = Required Inform	ation DK Cancel

QA Summary Form

- Must be printed and submitted with GOADS-2005 file
- Can be printed at any time
- Does not supersede QC results
- Identifies key data that are needed to calculate emission estimates
- Data fields also listed in Appendix B of User's Guide

Exporting Files

- Export <u>entire</u> inventory at one time for submittal to MMS (preferred)
- Can export select monthly surveys
- Can export only descriptive data

Technical Issues

- Volume vented
- Volume flared
- Losses from flashing
- Fuel usage, composition
- Fugitive component count

Losses from Flashing

Losses from Flashing - GOR

- Direct measurement
- Vasquez-Beggs Correlation Equations (SPE Paper 6719)
- Griswold and Ambler GOR Chart Method (SPE Paper 7175)
- Lab analysis of pressurized oil sample gas-tooil ratio (GOR)
- API E&P TANK Version 2 software
- Process simulators such as HYSYS or PROSIM

- LP sep. oil to heater treater (HT) that dumps to atm. storage tank (T-1) that vents its flash gas to atmosphere.
- The LP sep. flash gas to the suction of the onsite compressor (i.e., the system). The heater treater vents its flash gas remotely to the low pressure vent system (V-1).

Losses from Flashing - GOR

- Create two flash records, FLASH-1 and FLASH-2
- FLASH-1, enter data for the flash between the LP to HT - vents to V-1
- FLASH-2, enter data for the flash between the HT and T-1 - vents locally
- LP sep sends gas to the onsite compressor, and flash not vented to atm. (or flared) and would not be reported.

Skid Type	Valves	Pump Seals	Threaded Connections	Flanges	Open Ended Lines	Compressor Seals*	Diaphragms	Drains	Dump Arms	Hatches	Instruments	Meters	Pressure Relief Valves	Polished Rods	Other Relief Valves
Separator Skid	34	0	13	73		0	0		0	0	15		1	O	0
Heater Treater Skid	98	0	70	114	0	0	0		0	0	25		3	0	0
LACT Charge Pump Skid	21	3	б	47	0	0	0	1	0	O	9		0	O	0
LACT Skid	62	1	75	69	0	0	0	1	0	0	34			0	0
Pipeline Pumps Skid	39	3	12	78	0	0	0	2	0	O	70		3	Ū	0
Pig Launcher/Receiver Skid	13	Ō	14	16	0	0	0	0	0	0	9	0	1	0	0
Compressor Skid	119	0	113	138	0	4		1	0	0	69		9	4	0
Filter/Separator Skid	30	0	25	37	0	0	0	1	0	0	9		1	0	0
Gas Dehydration Skid	23	0	14	40	0	0		1	0	0	12		1	0	0
Glycol Regeneration Skid	134	0	110	194		0	0	4	0	0	45		7	б	1
Gas Meter	10	0	11	26		0	0	1	0	0	21	2	0	0	0
Fuel Gas Skid	62	0	47	85	0	0	0	1	0	0	32		4	Ū	0
Flotation Cell Skid	41	1	34	70		0	1	1	0	15			2	0	2
Scrubber	13	0	13	18	0	0	0	1	0	0	9		1	O	0
Amine Unit	226	8	166	391	0	0	1	5	0	0	121	2	12	0	1
Line Heater	30	0	46	18				1	0	0	10		0	0	1
Production Manifold	108	0	31	148	0	0	0	1	0	0	43		0	7	0
Wellhead	15	0	6	19	0	0	0	0	0	0	11		0	0	0
Import or Export Pipeline	3	0	0	9	0	0	0	0	0	0	0	0	0	0	0

GOADS-2005 Demonstration